30 research outputs found

    26. Transcranial Sonography in Differential Diagnosis of Restless Legs Syndrome

    Get PDF

    Analysis of tidal flows through the Strait of Gibraltar using Dynamic Mode Decomposition

    Full text link
    The Strait of Gibraltar is a region characterized by intricate oceanic sub-mesoscale features, influenced by topography, tidal forces, instabilities, and nonlinear hydraulic processes, all governed by the nonlinear equations of fluid motion. In this study, we aim to uncover the underlying physics of these phenomena within 3D MIT general circulation model simulations, including waves, eddies, and gyres. To achieve this, we employ Dynamic Mode Decomposition (DMD) to break down simulation snapshots into Koopman modes, with distinct exponential growth/decay rates and oscillation frequencies. Our objectives encompass evaluating DMD's efficacy in capturing known features, unveiling new elements, ranking modes, and exploring order reduction. We also introduce modifications to enhance DMD's robustness, numerical accuracy, and robustness of eigenvalues. DMD analysis yields a comprehensive understanding of flow patterns, internal wave formation, and the dynamics of the Strait of Gibraltar, its meandering behaviors, and the formation of a secondary gyre, notably the Western Alboran Gyre, as well as the propagation of Kelvin and coastal-trapped waves along the African coast. In doing so, it significantly advances our comprehension of intricate oceanographic phenomena and underscores the immense utility of DMD as an analytical tool for such complex datasets, suggesting that DMD could serve as a valuable addition to the toolkit of oceanographers

    Universal neural field computation

    Full text link
    Turing machines and G\"odel numbers are important pillars of the theory of computation. Thus, any computational architecture needs to show how it could relate to Turing machines and how stable implementations of Turing computation are possible. In this chapter, we implement universal Turing computation in a neural field environment. To this end, we employ the canonical symbologram representation of a Turing machine obtained from a G\"odel encoding of its symbolic repertoire and generalized shifts. The resulting nonlinear dynamical automaton (NDA) is a piecewise affine-linear map acting on the unit square that is partitioned into rectangular domains. Instead of looking at point dynamics in phase space, we then consider functional dynamics of probability distributions functions (p.d.f.s) over phase space. This is generally described by a Frobenius-Perron integral transformation that can be regarded as a neural field equation over the unit square as feature space of a dynamic field theory (DFT). Solving the Frobenius-Perron equation yields that uniform p.d.f.s with rectangular support are mapped onto uniform p.d.f.s with rectangular support, again. We call the resulting representation \emph{dynamic field automaton}.Comment: 21 pages; 6 figures. arXiv admin note: text overlap with arXiv:1204.546

    IMT in Smokers

    Get PDF
    corecore